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Problem: static arrays are static!

int my_array[100];

Semi-solution: dynamically-allocated arrays:

int *my_array = new int[size];



Problem: static arrays are static!

int my_array[100];

Semi-solution: dynamically-allocated arrays:

int *my_array = new int[size];



Problem: might not know max size when
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All problems in computer science
can be solved by another level of
indirection.

Solution: dynamic arrays (also known as
resizable arrays)
Idea: store a pointer to a dynamically
allocated array, and replace it with a
newly-allocated array as needed.
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Definition
Dynamic Array:
Abstract data type with the following
operations (at a minimum):

Get(i): returns element at location i∗
Set(i, val): Sets element i to val∗
PushBack(val): Adds val to the end
Remove(i): Removes element at
location i
Size(): the number of elements

∗must be constant time



Definition
Dynamic Array:
Abstract data type with the following
operations (at a minimum):

Get(i): returns element at location i∗

Set(i, val): Sets element i to val∗
PushBack(val): Adds val to the end
Remove(i): Removes element at
location i
Size(): the number of elements

∗must be constant time



Definition
Dynamic Array:
Abstract data type with the following
operations (at a minimum):

Get(i): returns element at location i∗
Set(i, val): Sets element i to val∗

PushBack(val): Adds val to the end
Remove(i): Removes element at
location i
Size(): the number of elements

∗must be constant time



Definition
Dynamic Array:
Abstract data type with the following
operations (at a minimum):

Get(i): returns element at location i∗
Set(i, val): Sets element i to val∗
PushBack(val): Adds val to the end

Remove(i): Removes element at
location i
Size(): the number of elements

∗must be constant time



Definition
Dynamic Array:
Abstract data type with the following
operations (at a minimum):

Get(i): returns element at location i∗
Set(i, val): Sets element i to val∗
PushBack(val): Adds val to the end
Remove(i): Removes element at
location i

Size(): the number of elements

∗must be constant time



Definition
Dynamic Array:
Abstract data type with the following
operations (at a minimum):

Get(i): returns element at location i∗
Set(i, val): Sets element i to val∗
PushBack(val): Adds val to the end
Remove(i): Removes element at
location i
Size(): the number of elements

∗must be constant time



Implementation

Store:
arr: dynamically-allocated array
capacity: size of the
dynamically-allocated array
size: number of elements currently in
the array



Dynamic Array Resizing

arr size: 0 capacity: 2

PushBack(a)
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Dynamic Array Resizing
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PushBack(e)



Get(i)
if i < 0 or i ≥ size:
ERROR: index out of range

return arr[i]



Set(i, val)
if i < 0 or i ≥ size:
ERROR: index out of range

arr[i] = val



PushBack(val)
if size = capacity:
allocate new_arr[2× capacity]
for i from 0 to size− 1:

new_arr[i]← arr[i]
free arr
arr← new_arr; capacity← 2× capacity

arr[size]← val
size← size + 1



Remove(i)
if i < 0 or i ≥ size:
ERROR: index out of range

for j from i to size− 2:
arr[j]← arr[j + 1]

size← size− 1



Size()
return size



Common Implementations

C++: vector
Java: ArrayList
Python: list (the only kind of array)



Runtimes

Get(i) O(1)

Set(i, val) O(1)
PushBack(val) O(n)

Remove(i) O(n)
Size() O(1)
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be resized.

Appending a new element to a dynamic
array is often constant time, but can
take O(n).
Some space is wasted

—at most half.
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Sometimes, looking at the individual
worst-case may be too severe. We may want
to know the total worst-case cost for a
sequence of operations.



Dynamic Array
We only resize every so often.
Many O(1) operations are followed by an
O(n) operations.
What is the total cost of inserting many
elements?



Definition
Amortized cost: Given a sequence of n
operations, the amortized cost is:

Cost(n operations)
n



Aggregate Method
Dynamic array: n calls to PushBack

Let ci = cost of i’th insertion.

ci = 1 +
{

i− 1 if i− 1 is a power of 2
0 otherwise

∑n
i=1 ci
n =

n +
∑⌊log2(n−1)⌋

j=1 2j

n =
O(n)

n = O(1)
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Banker’s Method

Charge extra for each cheap operation.

Save the extra charge as tokens in your
data structure (conceptually).
Use the tokens to pay for expensive
operations.

Like an amortizing loan.
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Banker’s Method
Dynamic array: n calls to PushBack

Charge 3 for each insertion: 1 token is the
raw cost for insertion.

Resize needed: To pay for moving the
elements, use the token that’s present
on each element that needs to move.
Place one token on the newly-inserted
element, and one token capacity

2 elements
prior.
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Banker’s Method
Dynamic array: n calls to PushBack
Charge 3 for each insertion. 1 coin is the raw
cost for insertion.
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Physicist’s Method
Define a potential function, Φ which
maps states of the data structure to
integers:

Φ(h0) = 0
Φ(ht) ≥ 0

amortized cost for operation t:
ct + Φ(ht)− Φ(ht−1)

Choose Φ so that:

if ct is small, the potential increases
if ct is large, the potential decreases by
the same scale
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The cost of n operations is:

∑n
i=1 ci

The sum of the amortized costs is:
n∑

i=1
(ci + Φ(hi)− Φ(hi−1))

=c1 + Φ(h1)− Φ(h0)+

c2 + Φ(h2)− Φ(h1) · · ·+
cn + Φ(hn)− Φ(hn−1)

=Φ(hn)− Φ(h0) +
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i=1
ci ≥
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Alternatives to Doubling the Array
Size

We could use some different growth factor
(1.5, 2.5, etc.).
Could we use a constant amount?



Cannot Use Constant Amount
If we expand by 10 each time, then:
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Summary
Calculate amortized cost of an
operation in the context of a sequence
of operations.

Three ways to do analysis:

Aggregate method (brute-force sum)
Banker’s method (tokens)
Physicist’s method (potential function,
Φ)

Nothing changes in the code: runtime
analysis only.
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